References

¹Marston, T.U., Atkins, A.G., and Felbeck, D.K., "Interfacial Fracture Energy and the Toughness of Composites," *Journal of Materials Science*, Vol. 9, 1974, pp. 447-455.

²Atkins, A.G., Letter to 'Nature,' Vol. 252, Nov. 1974, pp. 116-118.

³Atkins, A.G., "Intermittent Bonding for High Toughness/High Strength Composites," *Journal of Materials Science*, Vol. 10, 1975, pp. 819-832.

⁴Cook, J. and Gordon, J.E., "A Mechanism for the Control of Crack Propagation in All-Brittle Systems," Proceedings of the Royal Society (London) Vol. A282, 1964, pp. 508-520.

⁵ ASTM, Special Technical Publication No. 463, 1970.

⁶Gurney, C. and Hunt, J., "Quasi-static Crack Propagation", Proceedings Royal Society, (London), Vol. A299, 1967, pp. 508-523.

⁷Gurney, C. and Mai, Y.W., "Stability of Cracking," *Engineering Fracture Mechanics*, Vol. 4, 1972, pp. 853-863.

Errata

Some Aspects of Fan Noise Suppression Using High Mach Number Inlets

S.D. Savkar

General Electric Company, Schenectady, N.Y.

and
S.B. Kazin

General Electric Company, Evendale, Ohio

[J. Aircraft 12, 487-493) (1975)]

CORRECTED captions to Figs. 2, 8, 9, 10, 11, 12, 14 should read:

Fig. 2 Evolution of a rotor (cascade) MPT pattern using the nonlinear model of Kurosaka. 6 B=53 blades. $M_{\infty}=1.135$. Blade to blade spacing, S=1.09 in. Incidence for nominal stagger = 1.05° . Nominal stagger 65°. x=axial distance; $\bigcirc =$ uniform rotor; $\bigcirc = 25$ th shaft harmonic; $\bigcirc = 13$ th shaft harmonic; $\bigcirc = BPF$; $\bigcirc = 41$ st shaft harmonic.

Received September 9, 1975.

Index categories: Aircraft Noise, Aerodynamics (including Sonic Boom); Aircraft Aerodynamics (including Component Aerodynamics); Subsonic and Transonic Flow.

- Fig. 8 Aerodynamic behavior of accelerating inlets—total pressure recovery correlated with one-dimensional geometric throat Mach number. \triangle -inlet 1 (baseline); \bigcirc -inlet 2; \bigcirc -inlet 3; \bigcirc -inlet 4. All inlets L/d=1. Inlet 4 has an extended high Mach number region and the shortest diffuser.
- Fig. 9 Measured radiated sound power vs wheel speed for the GE-Corporate Research & Development tests. \triangle -inlet 1 (baseline); \lozenge -inlet 2; \lozenge -inlet 3; \lozenge -inlet 4. Note the breaks in curves for inlets 2 and 3 which appear to be traceable to effects of unsteady shock boundary-layer interaction in the inlet throat.
- Fig. 10 Noise reduction for the GE-Corporate Research & Development tests. Peak 200 ft sideline PNL tested for correlation with peak wall Mach number. All data referenced to inlet 1. -inlet 2; -inlet 3; -inlet 4.
- Fig. 11 Noise reduction for the GE-Corporate Research & Development tests in terms of peak 200 ft sideline PNL. Correlation with respect to one-dimensional geometric throat Mach number. All data referenced to inlet 1. \lozenge -inlet 2; \bigcirc -inlet 3; \lozenge -inlet 4.
- Fig. 12 Noise reduction data for the GE-Corporate Research & Development tests (high-speed fan) in terms of radiated sound power level. -inlet 2; -inlet 3; ◇ -inlet 4. - calculations using inlet 3 Mach number distribution. All data referenced to inlet 1.
- Fig. 14 Composite of accelerating inlet noise reduction data—influence of wheel tip speed. ○-½ scale fan data; ♦-Langley high tip speed; △-Langley low tip speed; ○-GE-Corporate Research & Development tests (high-speed fan).